Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychiatr Genet ; 22(1): 1-14, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21970977

RESUMO

OBJECTIVE: The chromosomal region, 15q13-q14, including the α7 nicotinic acetylcholine receptor gene, CHRNA7, is a replicated region for schizophrenia. This study fine-mapped genes at 15q13-q14 to determine whether the association is unique to CHRNA7. METHODS: Family-based and case-control association studies were performed on Caucasian-non-Hispanic and African-American individuals from 120 families as well as 468 individual patients with schizophrenia and 144 well-characterized controls. Single-nucleotide polymorphism (SNP) markers were genotyped, and association analyses carried out for the outcomes of schizophrenia, smoking, and smoking in schizophrenia. RESULTS: Three genes were associated with schizophrenia in both ethnic populations: TRPM1, KLF13, and RYR3. Two SNPs in CHRNA7 were associated with schizophrenia in African-Americans, and a second SNP in CHRNA7 was significant for an association with smoking and smoking in schizophrenia in Caucasians. CONCLUSION: Results of these studies support association of the 15q13-q14 region with schizophrenia. The broad positive association suggests that more than one 15q gene may be contributing to the disorder, either in combination or through a regulatory mechanism.


Assuntos
Cromossomos Humanos Par 15/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Esquizofrenia/genética , Negro ou Afro-Americano/genética , Estudos de Casos e Controles , Família , Ligação Genética , Marcadores Genéticos , Técnicas de Genotipagem , Hispânico ou Latino/genética , Humanos , Repetições de Microssatélites/genética , Razão de Chances , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único/genética , Fumar/genética , População Branca/genética
2.
J Mol Neurosci ; 47(2): 389-400, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22052086

RESUMO

The α7 nicotinic acetylcholine receptor is known to regulate a wide variety of developmental and secretory functions in neural and non-neural tissues. The mechanisms that regulate its transcription in these varied tissues are not well understood. Epigenetic processes may play a role in the tissue-specific regulation of mRNA expression from the α7 nicotinic receptor subunit gene, CHRNA7. Promoter methylation was correlated with CHRNA7 mRNA expression in various tissue types and the role of DNA methylation in regulating transcription from the gene was tested by using DNA methyltransferase (DNMT1) inhibitors and methyl donors. CHRNA7 mRNA expression was silenced in SH-EP1 cells and bisulfite sequencing PCR revealed the CHRNA7 proximal promoter was hypermethylated. The proximal promoter was hypomethylated in the cell lines HeLa, SH-SY5Y, and SK-N-BE which express varying levels of CHRNA7 mRNA. Expression of CHRNA7 mRNA was present in SH-EP1 cells after treatment with the methylation inhibitor, 5-aza-2-deoxycytidine (5-Aza-CdR), and increased in SH-EP1 and HeLa cells using another methylation inhibitor, zebularine (ZEB). Transcription from the CHRNA7 promoter in HeLa cells was increased when the methyl donor methionine (MET) was absent from the media. Using methylation-sensitive restriction enzyme analysis (MSRE), there was a strong inverse correlation between CHRNA7 mRNA levels and promoter DNA methylation across several human tissue types. The results support a role for DNA methylation of the proximal promoter in regulation of CHRNA7 transcription.


Assuntos
Metilação de DNA/genética , Regiões Promotoras Genéticas/genética , Receptores Nicotínicos/genética , Transcrição Gênica/fisiologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/genética , Células HeLa , Humanos , Especificidade de Órgãos/genética , Cultura Primária de Células , Receptores Nicotínicos/fisiologia , Transcrição Gênica/genética , Receptor Nicotínico de Acetilcolina alfa7
3.
J Physiol ; 587(Pt 15): 3911-20, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19505983

RESUMO

The intracellular signalling kinases Akt/protein kinase B (Akt), protein kinase A (PKA) and adenosine monophosphate-activated protein kinase (AMPK) are phosphorylated in response to increased mechanical force or perfusion rate in cultured endothelial cells or isolated blood vessels. All three kinases phosphorylate endothelial nitric oxide synthase (eNOS) on serine (S) 1177, while Akt and PKA additionally phosphorylate eNOS on S617 and S635 respectively. Although these kinases might contribute to subsequent activation of eNOS during dynamic exercise, the specific mediators of exercise-induced eNOS phosphorylation and activation in vivo are unknown. We determined the impact of 50 min of treadmill running on the phosphorylation of Akt, AMPK, cyclic adenosine monophosphate response element binding protein (CREB - a target of PKA) and eNOS (S 1177, 635 and 617 and threonine (T) 495) in the presence or absence of pharmacological inhibition of PI3 kinase (PI3K) and Akt signalling using wortmannin. Compared to arteries from sedentary mice, eNOS enzyme activity was greater in vessels from treadmill-running animals and was associated with increased phosphorylation of Akt (S473), CREB (S133), AMPK (T172), and eNOS at S1177 and S617 but not at S635 or T495. These data suggest that Akt signalling is a major mediator of eNOS activation. To confirm this, treadmill-running was performed in the presence of vehicle (DMSO) or PI3K inhibition. Compared to results from sedentary mice, vascular Akt phosphorylation and eNOS phosphorylation at S617 during treadmill-running were prevented by wortmannin but not vehicle treatment, whereas exercise-related increases in AMPK and CREB phosphorylation were similar between groups. Arterial eNOS phosphorylation at S1177 increased during exercise after wortmannin treatment relative to values obtained from sedentary animals, but the elevation was blunted by approximately 50% compared to results from vehicle-treated mice. These findings indicate that Akt and AMPK contribute importantly to vascular eNOS S1177 phosphorylation during treadmill-running, and that AMPK is sufficient to activate p-eNOS S1177 in the presence of PI3K inhibition.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Artérias/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Condicionamento Físico Animal/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Androstadienos/farmacologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Wortmanina
4.
Circ Res ; 104(9): 1085-94, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19342603

RESUMO

Impaired insulin signaling via phosphatidylinositol 3-kinase/Akt to endothelial nitric oxide synthase (eNOS) in the vasculature has been postulated to lead to arterial dysfunction and hypertension in obesity and other insulin resistant states. To investigate this, we compared insulin signaling in the vasculature, endothelial function, and systemic blood pressure in mice fed a high-fat (HF) diet to mice with genetic ablation of insulin receptors in all vascular tissues (TTr-IR(-/-)) or mice with genetic ablation of Akt1 (Akt1-/-). HF mice developed obesity, impaired glucose tolerance, and elevated free fatty acids that was associated with endothelial dysfunction and hypertension. Basal and insulin-mediated phosphorylation of extracellular signal-regulated kinase 1/2 and Akt in the vasculature was preserved, but basal and insulin-stimulated eNOS phosphorylation was abolished in vessels from HF versus lean mice. In contrast, basal vascular eNOS phosphorylation, endothelial function, and blood pressure were normal despite absent insulin-mediated eNOS phosphorylation in TTr-IR(-/-) mice and absent insulin-mediated eNOS phosphorylation via Akt1 in Akt1-/- mice. In cultured endothelial cells, 6 hours of incubation with palmitate attenuated basal and insulin-stimulated eNOS phosphorylation and NO production despite normal activation of extracellular signal-regulated kinase 1/2 and Akt. Moreover, incubation of isolated arteries with palmitate impaired endothelium-dependent but not vascular smooth muscle function. Collectively, these results indicate that lower arterial eNOS phosphorylation, hypertension, and vascular dysfunction following HF feeding do not result from defective upstream signaling via Akt, but from free fatty acid-mediated impairment of eNOS phosphorylation.


Assuntos
Pressão Sanguínea , Endotélio Vascular/enzimologia , Hipertensão/enzimologia , Resistência à Insulina , Insulina/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Gorduras na Dieta , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Inibidores Enzimáticos/farmacologia , Ácidos Graxos não Esterificados/metabolismo , Intolerância à Glucose/enzimologia , Intolerância à Glucose/fisiopatologia , Hipertensão/etiologia , Hipertensão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Obesidade/enzimologia , Obesidade/fisiopatologia , Ácido Palmítico/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Receptor de Insulina/deficiência , Receptor de Insulina/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Vasoconstrição , Vasoconstritores/farmacologia , Vasodilatação , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...